STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII-D TOKAMAK

by T.C. Luce General Atomics

at 13th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating Nizhny Novgorod, Russia

May 20, 2004

Acknowledgements: R.J. LaHaye, R. Prater, C.C. Petty, D.A. Humphreys

124-04/rs

IMPORTANCE OF TEARING MODE STABILIZATION TO TOKAMAK BURNING PLASMA EXPERIMENTS

- For tokamak burning plasma experiments such as ITER, m=2/n=1 tearing modes represent the effective pressure limit for the baseline scenario. If these modes grow too large, the plasma will experience a major disruption, which has the potential to damage the tokamak or its internal components. Therefore, a system to stabilize these modes, if they occur, is the first line of defense against disruption-induced damage.
- Since the m=2/n=1 tearing mode is the effective limit in standard operation, improving the plasma performance requires avoiding these modes. Active control would be required with very high reliability.
- The prospect of using millimeter waves at the EC resonance for control of these modes is driving the physics and technology in all areas of interest to this meeting
 - High power, high frequency gyrotrons
 - Improvements in launcher design and control
 - Theory and experimental verification of ECCD in the vicinity of these modes
 - Real-time detection of mode size and location with ECE

CONCEPTUAL PICTURE OF TEARING MODE STABILIZATION BY CURRENT DRIVE

- For classical tearing modes, it is energetically favorable for the current on a rational surface to clump, with current perturbations in the direction opposite to the total current
- An additional destabilizing term occurs if the pressure is flattened in the island O point, leading to a local deficit in the bootstrap current
- Stabilization by current drive is achieved by replacing the "missing" current by a non-inductive source or by reducing the classical driving term

APPLICATION OF EC POWER IS EFFECTIVE FOR COMPLETE SUPPRESSION OF AN m=2/n=1 TEARING MODE

- m=2/n=1 tearing modes have been suppressed successfully by use of millimeter waves
- The suppression effect is localized, indicating:
 - ELMing H–mode edge does not disperse the beam
 - The mode itself does not spread the deposition
- The suppression effect is maximum when the deposition coincides with the island location
- The suppression effect is dominantly due to current drive rather than heating
- There is growing evidence that the modification of the classical driving term (△´) is important

ECCD HAS A LOCALIZED EFFECT ON THE m=2/n=1 TEARING MODE

124-04/rs

m=2/n=1 TEARING MODE IS COMPLETELY SUPPRESSED AT HIGH β USING CLOSED-LOOP FEEDBACK TO OPTIMIZE THE ECCD LOCATION

124-04/rs

ACTIVE TRACKING ALLOWS HIGHER STABLE BETA TO 3/2 NTM

THE DOMINANT INTERACTION OF THE EC POWER WITH THE TEARING MODE IS THROUGH CURRENT DRIVE

Relative location

 of the deposition
 and the mode is
 changed by a continuous
 variation of the toroidal
 magnetic field

SAN DIEGO

AT HIGHER POWER, COMPLETE SUPPRESSION OR MODE LOCKING IS OBSERVED, DEPENDING ON THE CURRENT DRIVE DIRECTION

POSSIBLE EVIDENCE FOR THE IMPORTANCE OF CHANGE IN Δ FOR SUPPRESSION

- A complete system for tearing mode suppression has been demonstrated in DIII–D
- Extrapolation to ITER for both hardware and physics remains challenging
- For optimized mode suppression:
 - Feedback control of resonance location relative to the mode is required
 - Co-ECCD is required
 - Localized ECCD is required (has implications for launcher design and gyrotron frequency choice)
- For operation in the unstable region, a predictive model for choosing the deposition location is required

