Prospects of EBW emission diagnostics and EBW Heating in Spherical Tokamaks

V. F. Shevchenko ${ }^{1}$, Y. Baranov ${ }^{1}$, M. O'Brien ${ }^{1}$, A. D. Piliya ${ }^{2}$, J. Preinhaelter³, A. N. Saveliev², E. N. Tregubova²,

$$
\text { F. Volpe }{ }^{1}
$$

${ }^{1}$ EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK
${ }^{2}$ Ioffe Institute, Politekhnicheskaya 26, 194021 St.Petersburg, Russia
${ }^{3}$ EURATOM/IPP.CR Association, Institute of Plasma Physics, 18221 Prague, Czech Republic

Acknowledgements
This work was jointly funded by the United Kingdom Engineering and Physical Sciences Research Council and by EURATOM.

Outline

EBW Emission in ST

EBW Heating Experiments in MAST at 60 GHz

EBWH and EBW CD Modelling in ST

UKAEA

MAST Parameters

	Design	Achieved
Major radius	0.85 m	0.85 m
Minor radius	0.65 m	0.65 m
Plasma current	2 MA	1.3 MA
Toroidal field	0.52 T	0.52 T
NBI heating	5 MW	3.3 MW
RF heating	1.4 MW	0.9 MW
Pulse length	5 s	0.7 s

EBW Emission in Spherical Tokamaks

O-X-B EBW emission enhancement in H-mode

Midplane topology of cut-offs and resonances during H -mode in MAST

EBW signals from different EC harmonics during H-mode in MAST

* X-B emission enhancement in H-mode, NSTX: G. Taylor et al, 14 ${ }^{\text {th }}$ Conf. RF Power in Plasmas, 2001

O-X-B mode conversion efficiency

Parabolic density profile

Steep density profile

Contour plots of the O-X-B mode conversion efficiency at 37 GHz represented in angular co-ordinates.
In H-mode the O -X-B mode conversion angular window becomes broader for all frequencies below the \mathbf{O}-mode cut-off.

Shot \#7680 EBW spectrum in low TF ($I_{T F}=77 \mathrm{kA}$) with plasma current ramp down

EBW emission suppression in H-mode

EBW signals suppression during high density H-mode in MAST

EBW Spectra in L-mode and in H-mode

Measured and simulated EBW spectra in high density L-mode in MAST, shot \#7798 at 0.24 s.

- Model: 1D full wave mode coupling, EBW raytracing including collisional and non-collisional damping, radiative transfer for non-local wave damping.
- Good agreement in L-mode plasma
- Disagreement is strong in high beta plasmas and in a long sustained high density H-mode.

Measured and simulated EBW spectra in high density H-mode in MAST, shot \#7786 at 0.24 s.

[^0]mode in low TF ($I_{T F}=77 \mathrm{kA}$)
V Shevchenko, EC-13 Joint Workshop on ECE \& ECRH, 17-20 May 2004, Nizhniy Novgorod, Russia
UKAEA

Effect of Magnetic Well in High Beta Plasma

Midplane topology of cut-offs and resonances in high beta plasma in MAST. Magnetic well is formed at $R=105 \mathrm{~cm}$

V Shevchenko, EC-13 Joint Workshop on ECE \& ECRH, 17-20 May 2004, Nizhniy Novgorod, Russia

No magnetic well

Second harmonic absorption

Magnetic well

Magnetic Well Effects

- Magnetic wells observed in MAST can explain only ~50\% of EBW radiative temperature reduction in high beta plasma
- In experiment radiative temperature can be suppressed by an order of magnitude
- However, magnetic well can appear near the plasma edge due to the edge currents (bootstrap, P-S and diamagnetic) generated during H -mode
- Such current (density of 1-2 MA/m²) has been recently measured on DIII-D by Zeeman polarimetry with Li beam (A.W. Leonard et al, Bull. Am. Phys. Soc. 48, 184 (2003).
- Edge current of the similar value in MAST could cause a 5° pitch angle increase because of lower toroidal field.

Edge Current Effects at Second Harmonic

Midplane topology of cut-offs and resonances for shot \#6141 in MAST. Edge magnetic well was formed by edge current of $2 \mathrm{MA} / \boldsymbol{m}^{2}$

Power deposition at second harmonic with edge current

- Edge current causes two effects: mode conversion efficiency reduction due to the pitch angle increase and enhanced peripheral absorption
- Both effects are local in frequency space
- Both effects result in radiative temperature reduction
- Edge current in principle explains all observed peculiarities of EBW emission
- Experimental proof is required for this hypothesis

Prospects of EBW emission diagnostics

- Electron temperature only for low beta and in L-mode.
- EBW emission can be used for reconstruction of the outer part of q profile in plasmas exhibiting sawtooth-like spectrum.
- EBW propagation is highly sensitive to edge plasma currents. The inverse problem must be solved for correct data interpretation.
- Edge pitch angle can be measured directly in the range of frequencies (at different depth in the pedestal) with angular scanning EBW radiometer or EBW imaging system.
- Magnetic well itself is an interesting physical phenomenon. EBW radiometry is a valuable tool in its investigation.

MAST

First EBW Heating Experiments in MAST at 60 GHz

EBW Steerable Launcher in MAST

21 mirrors 7 beams 60 GHz

- Final polarisation can be chosen from linear to circular
- Resultant beam divergence is less than $+/-2.5^{\circ}(\mathrm{w}=25 \mathrm{~mm})$
- Poloidal steering range of $+/-13^{\circ}$, toroidal $+/-24^{\circ}$, accuracy of 0.5°

-Radiative temperature exceeds T_{e} by factor of 3-4 during ECRH pulse
-TS shows broadening of the scattered spectra at radii where power deposited

EBWH in High Density ITB-like Plasma

Shots \#9262, \#9263, \#9267. Overage heating result.

EBW modelling in MAST

-1D full wave mode coupling solution

- EBW ray-tracing uses a fully e/m hot plasma dispersion relation
- Magnetic equilibrium was obtained from the equilibrium code SCENE
- EBW wave propagation and damping was studied with the aim of EBWH and EBW CD optimisation
- Modelling was conducted over a range of frequencies and launch configurations for one particular high beta plasma scenario

Symmetry of EBW ray-tracing with respect to the midplane. 18 GHz , midplane launch, right (top) and left (bottom) polarisation

Same launch. Note, $k_{\mid /}$has opposite sign for above and below midplane absorption.

Top
View

Vertical Position Effect

Poloidal view of ray trajectories.
Midplane (right polarisation) launch at 17.5 GHz.

Poloidal ray trajectories. 40 cm above midplane (right polarisation) launch at 17.5 GHz.

EBW Ray-tracing Frequency Scan

Power deposition at fundamental resonance in the range of frequencies. 40 cm above midplane launch,

Power deposition at $2 \omega_{c e}$ in the range of frequencies. Comparison of 30 cm above midplane launch, right right polarisation

- Note the radial position of the absorption zone against the frequency.

Vertical Scan

Left polarisation, 18 GHz vertical scan

Right polarisation, 18 GHz vertical scan.

Note the Right polarisation can continue the Left polarisation graph (with inverse sign of $\mathbf{N}_{\|}$) to negative values of launch positions and vice versa.

Benchmarking of Fokker-Planck codes

- preliminary EBW CD calculations do not agree

$f=18 \mathrm{GHz}, \mathrm{z}=70 \mathrm{~cm}$, except where indicated.
r, I indicate right \& left polarisation respectively
Ohkawa effect dominant for r/a > 0.7

EBW can provide both Core and Edge CD

$$
P_{\mathrm{rf}}=1 \mathrm{MW}, \mathrm{f}=18 \mathrm{GHz}
$$

$\mathrm{z}=23 \mathrm{~cm}$, left polarisation

$\mathrm{z}=70 \mathrm{~cm}$, right polarisation

Edge CD

Summary

EBW offers potential for localised electron heating and current drive

Radial power deposition can be controlled by vertical launcher position and polarisation at a fixed frequency

EBWH and EBW CD are beneficial at fundamental resonance, but antenna design will be a challenge ($\phi_{\text {beam }} \geq 30 \mathrm{~cm}$ at 18 GHz)

Ohkawa effect likely to limit EBW CD efficiency at r/a ~ 0.7 but might provide efficient far off-axis CD

MAST

Back-up Material

Frequency Scan

First harmonic frequency scan. Perpendicular launch X-mode

Toroidal projection of EBW rays for 20 cm above midplane launch. 18 GHz , right polarisation = launch against the edge magnetic field Red indicates strong absorption of EBWs.

EBW Absorption and Power Deposition

EBW power absorption and absorption rate for 10 cm above midplane launch, 18 GHz , left polarisation

Contour map of power deposition profiles over the range of frequencies at fundamental EC resonance. 10 cm above midplane launch, left polarisation.

EBW Ray-tracing \& Frequency Scan

Right polarisation - launch 20cm above midplane

Poloidal view of ray trajectories at 17.5 GHz.

Power deposition in a range of frequencies (fundamental harmonic).

Mode Conversion Window and Antenna Alignment

Mode conversion angular windows estimated for Upper Bank of the EBW launcher. Beam patterns are superimposed assuming 'optimal' launch configuration.

- Even in the H -mode scenario-1 (widest coupling window) the mode coupling cannot exceed 10% for the Upper and Lower Banks and 5% for the Middle Bank.
- EBWH results presented above were obtained with 0.3-0.6 MW power and coupling efficiency <10\%
- Power up to 1 MW is expected in M4. With aligned launcher the coupling efficiency must reach 80-90\%
- EBWH effects must be stronger by an order of magnitude

Mode conversion windows estimated for Middle Bank in the high density H-mode scenario.

[^0]: Shot \#7695 EBW spectrum measured during H-

